Главное меню

Типовые алгоритмы сбора измерительной информации

Технически самой сложной будет ситуация, когда аргументы исследуемых величин не являются ни временем, ни пространственными координатами. В этом случае базирующее устройство должно содержать преобразователи, формирующие по командам с ЭВМ соответствующие воздействия с заданными значениями. Некоторые воздействия, например магнитные или электрические поля, могут изменяться практически мгновенно. В этом случае, как и при изменении пространственных координат, аргументы могут изменяться дискретно или непрерывно. Во втором случае значения аргументов и функций могут считываться с заданным шагом по аргументу или времени. Некоторые аргументы, например температура, влажность, химический состав, требуют для достижения заданного значения определенного времени. В этом случае алгоритм сбора данных может предусматривать непрерывное измерение изменяющегося аргумента в пределах интересующего интервала значений. Изменение необязательно должно быть равномерным во времени, поскольку значения аргумента и значения функции могут фиксироваться с заданным шагом аргумента. Рассмотренные выше алгоритмы сбора первичной информации, за исключением дельта-модуляции, предполагают периодическую выдачу отсчетов измеряемой физической величины. Однако любая регулярная система отсчетов может привести для определенных функций к систематическим погрешностям. Это можно проиллюстрировать простейшим примером. Пусть исследуемая функция — периодическая, целью измерения является определение ее постоянной составляющей а0, а отсчеты берутся с периодом Т0, кратным периоду исследуемого сигнала (рис. 3).

Тогда в зависимости от фазового сдвига между исследуемым сигналом и последовательностью отсчетов систематическая погрешность измерения постоянной составляющей будет лежать в пределах ±А независимо от числа усредняемых отсчетов. Устранить эту систематическую (при фиксированных временных соотношениях) погрешность можно, беря отсчеты в случайные моменты времени tj = jT0 + τj, где τj — независимые случайные величины, равномерно распределенные на интервале [0; Т0]. При этом возникает случайная погрешность, уменьшающаяся с увеличением числа отсчетов. Такая процедура устранения влияния систематических факторов путем искусственного введения случайности в процесс исследования называется рандомизацией. Примеры таких задач можно привести из самых различных областей. В свое время, когда разрядность АЦП не превышала восьми, усредняя несколько последовательных результатов преобразования, путем рандомизации искусственно увеличивали разрядность отсчетов.

В теоретическом плане анализ погрешностей из-за дискретизации функции нескольких аргументов аналогичен анализу погрешностей из-за дискретизации по времени. В общем случае оценить качество дискретизации и принять решение о ее приемлемости можно, рассматривая оценки достоверности решаемых задач для разных методов дискретизации. При этом теоретически или путем моделирования можно сравнивать реализуемые способы дискретизации с идеальными, практически нереализуемыми.

Перейти на страницу: 1 2 3 4 

Другое по теме:

Расчет характеристик сигналов и канала связи
На современном этапе развития перед железнодорожным транспортом стоят задачи по увеличению пропускной и провозной способности, грузовых и пассажирских перевозок, уменьшению времени оборотов вагонов и повышению производительности труда. Эти зада ...

Copyright © www.techproof.ru