Главное меню

Полупроводниковые генераторы

Трудности, возникающие при разработке полупроводниковых СВЧ генераторов и электровакуумных, одни и те же: мелкоструктурность элементов, сложность отвода тепла. Создание полупроводниковых приборов осложняется еще худшей теплопроводностью и меньшей допустимой рабочей температурой полупроводниковых материалов.

Несмотря на это, разработаны приборы на туннельных и лавинно-пролетных диодах, которые генерируют колебания небольшой мощности в миллиметровом диапазоне длин волн. Указанные ограничения делают невозможной работу классических полупроводниковых генераторов в субмиллиметровом диапазоне. В этом диапазоне могут использоваться умножители на полупроводниковых диодах и, очевидно, импульсные генераторы на лавинно-пролетных диодах (ЛПД). Были получены колебания на частоте = 340 ГГц с помощью генератора на ЛПД, работающего в импульсном режиме при больших импульсных токах. Можно предположить, что для работы в субмиллиметровом диапазоне могут быть созданы генераторы на туннельно-пролетных диодах.

Исследования последних лет указывают на большую перспективность использования объемных эффектов для генерации СВЧ колебаний. Первым таким эффектом, позволившим создать генераторы близкого к миллиметровому диапазона, явился эффект Ганна.

Применение так называемого режима ограничения накопления пространственного заряда (ОНПЗ) в диодах из арсенида галлия, предложенного Дж. Коуплендом, позволяет надеяться на создание высокоэффективных генераторов субмиллиметрового диапазона мощностью в несколько ватт.

Природа возникновения отрицательного дифференциального сопротивления в диоде из арсенида галлия, работающего в режиме ОНПЗ, та же, что и для режима, открытого Ганном.

В диоде Ганна отрицательная проводимость существует только в узкой области (домене) арсенида галлия с повышенной напряженностью поля, который дрейфует от отрицательного к положительному электроду. Область сильного поля разрушает большую часть отрицательной проводимости, и энергию в нагрузку отдает только часть электронов объема полупроводника. Частота в генераторе Ганна определяется длиной образца.

Режим ОНПЗ не связан с эффектом времени пролета, и частота генератора зависит в первую очередь от частоты настройки внешнего резонатора. Имеется возможность увеличить размеры прибора. При этом почти весь объем материала диода будет обладать отрицательной проводимостью. Вследствие этого мощность генераторов на диодах в режиме ОНПЗ увеличится на 4 - 6 порядков. Способ ограничения накопления пространственного заряда (режим ОНПЗ) основан на следующих явлениях.

Нарастание и спад (рассасывание) пространственного заряда происходят за конечное время, которое обратно пропорционально степени легирования материала полупроводника или концентрации носителей. Время нарастания пространственного заряда при величине поля, превышающей критический уровень возникновения отрицательной проводимости 3000 В/см, значительно больше, чем время спада (рассасывания), которое происходит, когда напряженность поля становится ниже критической. Таким образом, изменяя напряженность поля в диоде до уровня ниже критического на время, составляющее малую часть периода колебаний, можно осуществить рассасывание пространственного заряда, накопленного во время работы при напряженности, обеспечивающей появление отрицательного сопротивления.

Арсенидогаллиевый диод работает в режиме ОНПЗ, если выполняется условие

Перейти на страницу: 1 2

Другое по теме:

Многоканальная связь на железнодорожном транспорте
...

Copyright © www.techproof.ru