Главное меню

Основные типы полупроводниковых датчиков температуры

На практике для устранения погрешности широкое применение находит автоматическое введение поправки на температуру свободных концов термопары. Для этого в цепь термопары и милливольтметра включается мост, одним из плеч которого является медный терморезистор, а остальные образованы манганиновыми терморезисторами. При температуре свободных концов термопары, равной 0 °С, мост находится в равновесии; при отклонении температуры свободных концов термопары от 0 °С напряжение на выходе моста не равно нулю и суммируется с термоЭДС термопары, внося поправку в показания прибора (значение поправки регулируется специальным резистором). Вследствие нелинейности функции преобразования термопары, полной компенсации погрешности не происходит, но указанная погрешность существенно уменьшается.

В лабораторных условиях для точного измерения термоЭДС применяются лабораторные и образцовые компенсаторы постоянного тока с ручным уравновешиванием.

Пирометры

Серьезным недостатком рассмотренных выше термопреобразователей сопротивления и термоэлектрических преобразователей является необходимость введения датчика в контролируемую среду, в результате чего происходит искажение исследуемого температурного поля. Кроме того, непосредственное воздействие среды на датчик ухудшает стабильность его характеристик, особенно при высоких и сверхвысоких температурах и в агрессивных средах. От этих недостатков свободны пирометры – бесконтактные датчики, основанные на использовании излучения нагретых тел.

Тепловое излучение любого тела можно характеризовать количеством энергии, излучаемой телом с единицы поверхности в единицу времени и приходящейся на единицу диапазона длин волн. Такая характеристика представляет собой спектральную плотность и называется спектральной светимостью (интенсивностью монохроматического излучения).

Законы температурного излучения определены совершенно точно лишь для абсолютно черного тела. Зависимость спектральной светимости абсолютно черного тела от температуры и длины волны выражается формулой:

Ra = Aa-5(eB/(aT) – l)-1,

где a – длина волны, Т – абсолютная температура, А и В – постоянные.

Интенсивность излучения любого реального тела всегда меньше интенсивности абсолютно черного тела при той же температуре. Уменьшение спектральной светимости реального тела по сравнению с абсолютно черным учитывают введением коэффициента неполноты излучения; его значение различно для разных физических тел и зависит от состава вещества, состояния поверхности тела и других факторов.

Использующие энергию излучения нагретых тел пирометры делятся на радиационные, яркостные и цветовые.

Радиационные пирометры используются для измерения температуры от 20 до 2500 °С, причем прибор измеряет интегральную интенсивность излучения реального объекта; в связи с этим при определении температуры необходимо учитывать реальное значение коэффициента неполноты излучения.

В типичный радиационный пирометр входит телескоп, состоящий из объектива и окуляра, внутри которого расположена батарея из последовательно соединенных термопар. Рабочие концы термопар находятся на платиновом лепестке, покрытом платиновой чернью. Телескоп наводится на объект измерения так, чтобы лепесток полностью перекрывался изображением объекта и вся энергия излучения воспринималась термобатареей. ТермоЭДС термобатареи является функцией мощности излучения, а следовательно, и температуры тела.

Радиационные пирометры градуируются по излучению абсолютно черного тела, поэтому неточность оценки коэффициента неполноты излучения вызывает погрешность измерения температуры.

Яркостные (оптические) пирометры используются для измерения температур от 500 до 4000 °С. Они основаны на сравнении в узком участке спектра яркости исследуемого объекта с яркостью образцового излучателя

(фотометрической лампы). Фотометрическая лампа встроена в телескоп, имеющий объектив и окуляр. При измерении температуры телескоп направляют на исследуемое тело и добиваются четкого изображения тела и нити фотометрической лампы в одной плоскости. Затем, изменяя яркость нити путем изменения тока через нее (или изменяя яркость изображения тела с помощью перемещаемого оптического клина), добиваются одинаковой яркости изображения нити и исследуемого объекта. Если яркость тела больше яркости нити, то нить видна в виде черной линии на ярком фоне. В противном случае заметно свечение нити на более бледном фоне. При равенстве яркостей нить не видна, поэтому такие пирометры называют также пирометрами с исчезающей нитью.

Перейти на страницу: 1 2 3 4 5 6

Другое по теме:

Инженерные коммуникации
Естественная насыщенность почвы водой, как правило, не совпадает с нужной для роста и развития растений влажностью и во многих случаях является серьезной помехой для строительной деятельности человека. Поэтому необходимо искусственно создавать и ...

Copyright © www.techproof.ru